
ORIGINAL PAPER

Pharmacophore modeling, molecular docking, QSAR,
and in silico ADMET studies of gallic acid derivatives
for immunomodulatory activity

Dharmendra Kumar Yadav & Feroz Khan &

Arvind Singh Negi

Received: 2 June 2011 /Accepted: 29 September 2011 /Published online: 27 October 2011
# Springer-Verlag 2011

Abstract Immunomodulation refers to an alteration in the
immune response due to the intrusion of foreign molecules
into the body. In the present communication, QSAR and
docking studies of gallic acid derivatives were performed in
relation to their immunomodulatory activities. Screening
through the use of a QSAR model suggested that the
compounds G-4, G-7, G-9, G-10, G-12, and G-13 possess
immunomodulatory activity. Activity was predicted using a
statistical model developed by the forward stepwise
multiple linear regression method. The correlation coeffi-
cient (r2) and the prediction accuracy (rCV2) of the QSAR
model were 0.99 and 0.96, respectively. The QSAR study
indicated that chemical descriptors—dipole moment, steric
energy, amide group count, λmax (UV-visible) and molar
refractivity—are well correlated with activity, while
decreases in the dipole moment, steric energy, and molar
refractivity were negatively correlated. A molecular dock-
ing study showed that the compounds had high binding
affinities for the INFα-2, IL-6, and IL-4 receptors. Binding
site residues formed H-bonds with the designed gallic acid

derivatives G-3, G-4, G-5, G-6, G-7, and G-10. Moreover,
based on screening for oral bioavailability, in silico ADME,
and toxicity risk assessment, we concluded that compound
G-7 exhibits marked immunomodulatory activity, compa-
rable to levamisole.

Keywords Gallic acid . Immunomodulatory .Molecular
docking . QSAR . ADME . Toxicity . Druglikeness

Introduction

Immunomodulation refers to an alteration in the immune
response caused by the intrusion of foreign molecules into
the body. It can be either immunostimulation or immuno-
suppression. A large number of herbal drugs are mentioned
in Ayurveda (a traditional system of Indian medicine) due
to their immunomodulating activities [1, 2]. In the past,
autologous and heterologous proteins from living and
attenuated microorganisms as well as injections of animal
organ preparations have been used to restore an impaired
defense mechanism. Thymus peptides and other biological
response modifiers (BRM) (e.g., interferon, interleukins),
synthetic low molecular weight compounds (e.g., levami-
sole), chemically modified nucleotides, polysaccharides
from fungi (e.g., lentinan), and some plant extracts are also
being used for this purpose, especially in Europe and Asia.
Many medicinal plant products have been reported to
exhibit immunomodulatory effects, such as berberine,
boswellic acid, aristolochic acid, cichoric acid, and plum-
bagin [2]. Gallic acid is also one of the myriad of herbal
biochemicals whose activities have been largely unex-
plored. Gallic acid and its derivatives are polyphenolic
compounds found mostly in gallnuts, grapes, tea, hops, oak
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bark [1, 3, 4], as well as in processed beverages such as red
wine [2]. It has been known to exhibit a wide range of
biological activities, including antioxidant, anti-inflammatory,
antimutagenic, antimicrobial, and anticancer activities [5].
Gallic acid has been a building block of choice for various
pharmaceutical leads due to the presence of this moiety in
several bioactive natural molecules, such as combretastatin
A-4 and podophyllotoxin [6–8]. A number of gallic acid
derivatives have already been synthesized and found to act as
protease inhibitors, antimalarials, and anticancer compounds
[9, 10]. Gallic acid appears to have antifungal and antiviral
properties, and it acts as an antioxidant, thus helping to
protect our cells from oxidative damage [11]. It has also been
found to show cytotoxicity towards cancer cells but not
healthy cells [12]. Apart from this, it has been used as a
remote astringent in cases of internal hemorrhage [5].
Recently, an anti-inflammatory action of gallic acid arising
from its inhibitory action on histamine release and
proinflammatory cytokine production in mast cells was
reported [13, 14].

In the work described in this paper, we screened a library
of gallic acid derivatives for potential immunomodulatory
compounds using quantitative structure–activity relation-
ship (QSAR), molecular docking, and in silico ADME/Tox
studies. Based on the binding affinity energy, possible
immunomodulatory receptors were identified. A multiple
linear regression QSAR mathematical model was devel-
oped for activity prediction that successfully and accurately
(noting the corresponding experimental activities) pre-
dicted the immunomodulatory activities of some newly
designed gallic acid derivatives (G-4, G-7, G-9, G-10, G-
12, and G-13) that had the basic naphthophenone
pharmacophore [13, 14]. The QSAR model also quantified
the activity-dependent chemical descriptors and predicted
the lethal dose (log LD50) of each derivative, thus
indicating it potential range of toxicity. In the QSAR
model, the regression coefficient (r2), which indicates the
relationship correlation, was 0.99, while the cross-validation
coefficient (rCV2), which indicates the prediction accuracy,
was 0.96. The activity of each derivative was assessed
using the standard computational pharmacokinetic param-
eters (ADMET) of druglikeness and bioavailability. QSAR
studies indicated that dipole moment, steric energy, amide
group count, λmax (UV-visible), and molar refractivity
correlated well with immunomodulatory activity. Moreover,
based on oral bioavailability, in silico ADME, and
toxicity risk assessment screening, we concluded that
compound G-7 has greater immunomodulatory activity
then G-4, G-9, G-10, G-12, and G-13. These results offer
useful references for understanding the molecular mech-
anism and directing the molecular design of
pharmacophore-based lead compounds with improved
immunomodulatory activity.

Materials and methods

Structure cleaning and molecular docking

The chemical structures of the gallic acid derivatives were
constructed using the Scigress Explorer v.7.7.0.47 (formerly
CaChe) software package (Fujitsu Ltd., Tokyo, Japan).
Energy minimization of the compounds with “cleaned”
geometries was achieved through the MO-G application in
Scigress, which computes and minimizes an energy related to
the heat of formation. MO-G solves the Schrödinger equation
for the best molecular orbital and geometry of the ligand
molecule. The augmented molecular mechanics (MM2/MM3)
parameter was used to optimize the energy of each molecule
up to its lowest stable energy state. This energy minimization
process was performed until the energy change was less than
0.001 kcal mol−1 or the molecules had been updated almost
300 times. The 3D chemical structures of known drugs were
retrieved from the PubChem compound database at NCBI
(http://www.pubchem.ncbi.nlm.nih.gov). Crystallographic
3D structures of target proteins were retrieved from the
Brookhaven Protein Databank (http://www.pdb.org). The
valency and hydrogen bonding of each ligand as well as
each target protein were subsequently checked using the
Workspace module of the Scigress Explorer software.
Hydrogen atoms were added to the protein targets to achieve
the correct ionization and tautomeric states of amino acid
residues such as His, Asp, Ser, and Glu. Molecular docking
of the drugs and the gallic acid derivatives with the
immunomodulatory receptors was achieved using the
FastDock Manager and FastDock Compute engines that are
available with the Scigress Explorer software. To perform the
automated docking of ligands into the active sites, we used a
genetic algorithm with a fast and simplified potential of mean
force (PMF) scoring scheme [3, 15]. PMF uses atom types
that are similar to the empirical force fields used in mechanics
and dynamics. A minimization is performed by the FastDock
engine, which uses a Lamarkian genetic algorithm (LGA) so
that individuals adapt to the surrounding environment. The
best fits are sustained by analyzing the PMF scores of all
chromosomes and assigning more reproductive opportunities
to those with lower scores. This process was repeated for
3000 generations with 500 individuals and 100,000 energy
evaluations. Other parameters were left as their default
values. Structure-based screening involves docking candidate
ligands into protein targets and then applying a PMF scoring
function to estimate the likelihood that the ligand will bind to
the protein with high affinity [15–17].

Parameters for QSAR model development

Initially, a total of 61 immunomodulatory compounds/drugs
were used for QSAR modeling against 50 chemical
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descriptors. Out of these 61, only 22 compounds/drugs
were selected to provide a training data set for QSAR
model development. Selection was made on the basis of
structural/pharmacophore or chemical class similarity, to
ensure that a diverse set of data was used rather than only
data from compounds of the same family. Similarly, when
selecting the best subset of descriptors, highly correlated
descriptors were excluded through covariance analysis
using a correlation matrix. Finally, out of the 50 chemical
descriptors investigated initially, only 28 were used for
model development based on the forward stepwise multiple
linear regression method. The resulting QSAR model
exhibited a high regression coefficient, was successfully
validated using random test set compounds, and was
evaluated for the robustness of its predictions via the
cross-validation coefficient (Table 1, Fig. 8).

Statistical calculations used in QSAR modeling

Selecting a statistical method: stepwise multiple linear
regression

The stepwise multiple linear regression method calculates
QSAR equations by adding one variable at a time and
testing each addition for significance. Only variables that
are found to be significant are used in the QSAR equation.
This regression method is especially useful when the
number of variables is large and when the key descriptors
are not known. In the forward mode, the calculation begins
with no variables and builds a model by entering one

variable at a time into the equation. In backward mode, the
calculation begins with all variables included and drops
variables one at a time until the calculation is complete;
however, backward regression calculations can lead to
overfitting.

Multiple correlation coefficient (r)

Variation in the data is quantified by the correlation
coefficient (r), which measures how closely the observed
data tracks the fitted regression line. This is a measure of
how well the equation fits the data (i.e., it measures how
good the correlation is). A perfect relation has r=+1
(positively correlated) or −1 (negatively correlated); no
correlation has r=0. The regression coefficient (r2) is
sometimes quoted, and this gives the fraction of the
variance (in %) that is explained by the regression line.
The more scattered the data points, the lower the value of r.
A satisfactory explanation of the data is usually indicated
by an r2 of at least 0.9; compare r=0.9 (r2=0.81; 81% of
the variance is explained) with r=0.7 (r2=0.49; 49% of the
variance is explained; 51% is unexplained). Errors in either
the model or in the data will lead to a bad fit. This indicator
of fit to the regression line is calculated as

r2 ¼ sum of the squares of the deviations from the regression lineð Þ
= sum of the squares of the deviations from the meanð Þ

ð1Þ

r2 ¼ regression varianceð Þ= original varianceð Þ; ð2Þ

Table 1 Comparison of experimental and predicted in vivo activity calculated by using the derived QSAR model equation

Compound Exp. log LD50

(mg/kg)
Chemical descriptors of the QSAR model equation Predicted

log LD50

Dipole moment
(debye)

Steric energy
(kcal/mol)

Group count
(amide)

λ max

(UV-visible) (nm)
Molar
refractivity

Levamisole * 2.255 4.12 27.812 0 218.536 60.744 2.258

G-10# - 4.157 7.616 1 226.93 141.911 2.682

G-13# - 4.257 14.924 1 224.692 141.911 2.615

G-9# - 6.083 6.187 1 223.253 117.237 2.513

G-12# - 5.56 10.522 1 226.218 136.007 2.494

G-4# - 1.562 22.139 0 223.963 114.538 2.328

G-7# - 1.479 24.453 0 223.38 119.978 2.281

G-3 - 2.753 −27.813 0 225.584 116.577 2.217

G-1 - 2.662 11.588 0 213.185 94.167 2.116

G-6 - 3.699 4.93 0 225.643 119.238 2.009

G-8 - 2.278 47.049 0 213.123 115.254 1.957

G-2 - 3.839 18.516 0 224.884 124.932 1.908

G-5 - 5.015 19.903 0 223.576 105.021 1.862

* Standard immunomodulatory compound used as control, # predicted active gallic acid derivatives
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where the regression variance is defined as the original
variance minus the variance around the regression line. The
original variance is the sum of the squares of the distances
of the original data from the mean.

Validating QSAR equations and data: cross-validation
coefficient (rCV2)

The cross-validation coefficient is a squared correlation
coefficient generated during the validation procedure.

When the predictor variables are fixed,

rCV2 ¼ 1� N � 1=Nð Þ N þ k þ 1=N � k � 1ð Þ 1� r2
� �

: ð3Þ

When the predictor variables are random,

rCV2 ¼ 1� N � 1=N � k � 1ð Þ N � 2=N � k � 2ð Þ
� N þ 1=Nð Þ 1� r2

� �
; ð4Þ

where rCV2 refers to the cross-validation regression
coefficient, r2 refers to the regression coefficient, N refers
to the number of observations (compounds), and k refers to
the number of variables (descriptors).

Screening via pharmacokinetic properties

The ideal oral drug is one that is rapidly and completely
absorbed from the gastrointestinal tract, distributed specif-
ically to its site of action in the body, metabolized in a way
that does not instantly remove its activity, and eliminated in
a suitable manner without causing any harm. It has been
reported that around half of all drugs in development fail to
make it to the market because of poor pharmacokinetics
(PK) [18]. The PK properties depend on the chemical
properties of the molecule. PK properties such as absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
are important determinants of the success of the compound
for human therapeutic use [18–20]. Some important chem-
ical descriptors correlate well with PK properties, such as
the polar surface area (PSA; a primary determinant of
fractional absorption) and low molecular weight (MW; for
oral absorption) [21]. The distribution of the compound in
the human body depends on factors such as the blood–brain
barrier (log BB), permeability (such as the apparent Caco-2
permeability, apparent MDCK permeability, logKp for skin
permeability), the volume of distribution, and plasma
protein binding (logKhsa for serum protein binding) [21],
so these parameters were calculated and checked for
compliance with their standard ranges. The octanol–water
partition coefficient (logP) has been implicated in BBB
penetration and permeability prediction, as has PSA. It has
been reported that the process of excreting the compound
from the human body depends on the MW and logP.

Likewise, rapid renal clearance is associated with small and
hydrophilic compounds. On the other hand, the metabolism
of most drugs, which takes place in the liver, is associated
with large and hydrophobic compounds [22]. Higher
compound lipophilicity leads to increased metabolism and
poor absorption, along with an increased probability of
binding to unwanted hydrophobic macromolecules, thereby
increasing the potential for toxicity. In spite of some
observed exceptions to Lipinski’s rule, the property values
of the vast majority (90%) of orally active compounds are
within their cut-off limits [23]. Molecules that violate more
than one of these rules may not be sufficiently bioavailable.
When studying PK properties, screening based on Lipinski’s
rule of five (which is used to assess druglikeness) was
applied to the gallic acid derivatives. In addition, the oral
bioavailability of each gallic acid derivative was assessed
through its topological polar surface area (TPSA) using
ChemAxon’s MarvinView 5.2.6:PSA plugin software [24].
This descriptor has been shown to correlate well with
passive molecular transport through membranes, thus
allowing the prediction of drug transport properties, and it
has been linked to drug bioavailability (the percentage of
the dose of the drug that reaches the blood circulation).
Also, the number of rotatable bonds is a simple topological
parameter used by researchers as part of an extended
Lipinski’s rule of five as a measure of molecular flexibility.
This is a very good chemical descriptor for oral bioavail-
ability [25]. A rotatable bond is defined as any single non-
ring bond bound to a nonterminal heavy (i.e., non-
hydrogen) atom. Amide C–N bonds are not considered in
this context because of their high rotational energy barrier.
Moreover, some researchers have also included the sum of
H-bond donors and H-bond acceptors as a secondary
determinant of fractional absorption. The primary determi-
nant of fractional absorption is PSA [26]. According to the
extended Lipinski’s rule of five, the sum of H-bond donors
and acceptors should be ≤12 or the PSA should be ≤140Å2

[26], and the number of rotatable bonds should be ≤10 [25].
ADMET properties were calculated using QikProp v.3.2
software (Schrödinger, Portland, OR, USA, 2009).

Results and discussion

Chemical structure–activity relationship

In the present work, derivatives of gallic acid were
evaluated for their immunomodulatory activity through
QSAR and docking studies. The QSAR results indicated
that compounds G-10, G-13, G-9, G-12, G-4, and G-7
showed activity levels similar to or higher than that of
levamisole. Gallic acid and its derivatives have been
reported to possess immunomodulatory activity [11, 30].
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Thus, we designed a prototype in which the gallic acid part
was used as one of the naphthophenone rings. A fatty acid
chain was also used to add some flexibility to the molecule.
Thus, we designed and virtually optimized a number of
gallic acid derivatives based on the conformationally
restricted naphthophenone moiety as a basic unit along
with different linear side chains at the 2-O-position. In the
present work, we report the immunomodulatory activities
of these newly designed gallic acid derivatives with the
basic naphthophenone pharmacophore, which were found
to be comparable to potent immunomodulatory and anti-
inflammatory compounds (Fig. 1). Figure 2 shows the
gallic acid based pharmacophore and its derivatives that
were predicted to be active immunomodulatory compounds
through QSAR and docking studies.

Docking-based detection of immunomodulatory targets

The aim of the molecular docking study was to elucidate
whether gallic acid and its derivatives modulate the anti-
inflammatory and immunomodulatory receptors, and to
study their possible mechanisms of action. The results of
the molecular docking study are comparable to those
obtained from experimental studies of the activity of gallic
acid in humans; they suggest that gallic acid inhibits
histamine release and proinflammatory cytokine production
in human mast cells [14]. It was reported that the inhibitory
effect of gallic acid on histamine release was mediated by
the modulation of cAMP and intracellular calcium, and
gallic acid decreased proinflammatory cytokine gene
expression and production (e.g., of TNF-α and IL-6). The
inhibitory effect of gallic acid on proinflammatory cyto-
kines was found to be dependent on nuclear factor κB and
p38 mitogen-activated protein kinase [14]. However,
reports also suggest that gallic acid directly suppressed
the in vitro anti-sheep red blood cell (SRBC) antibody
response at noncytotoxic doses when several chemicals
such as azathioprine (Imuran) (0.5 μg/culture), gallic acid
(7 μg/culture), dextran sulfate (100 μg/culture), methylpar-
aben (100 μg/culture), and vanillin (200 μg/culture) were
examined for immunomodulatory effects using the
Mishell–Dutton in vitro antibody producing assay. All of

these chemicals were reported to interrupt an early phase of
the immune response, and had no effect on the actual
release of the specific anti-SRBC antibody [27]. In vitro
experiments relating to the anti-inflammatory and immu-
nomodulatory activities of gallic acid derivatives showed a
significant decrease in the expression of proinflammatory
mediators such as IL-6, TNF-α, and nitric oxide. Also, the
expression of immunomodulatory mediator IL-4 was found
to increase with gallic acid administration [14].

In the work presented here, we explored the orientations
and binding affinities (in terms of the docking energy in
kcal mol−1) of gallic acid derivatives towards proinflamma-
tory targets. It is well known that innate immune recogni-
tion is mediated by a structurally diverse set of receptors
that belong to several distinct protein families. Among them
are humoral proteins circulating in the plasma, endocytic
receptors expressed on the cell surface, and signaling
receptors that can be expressed either on the cell surface
or intracellularly [28]. Proinflammatory cytokines such as
interleukin-1 (IL-1), interleukin-6 (IL-6), or tumor necrosis
factor alpha (TNF-α) have been known to contribute to a
variety of inflammatory conditions, such as ischemic
tolerance [29], rheumatoid arthritis [30], nephritis [31],
and liver diseases [32]. Nitric oxide generated through
inducible NO synthase (iNOS) enzymatic activity has been
found to participate in various immune and inflammatory
reactions, while immunomodulatory cytokines such as
interleukin 4 (IL-4), interleukin 10 (IL-10), and interleukin
13 (IL-13) are responsible for inhibiting proinflammatory
signaling and hence reduce inflammation. Recent advances
made in studies of innate immunity have yielded a better
understanding of inflammatory mechanisms. Toll-like
receptors (TLRs) have been found to recognize and respond
to the moieties related to tissue injury and microbial
infections [33]. TLRs are mediators of various cell-
mediated and humoral immune responses caused by
different agents or TLR-specific ligands. Different TLRs
have been known to respond to a variety of pathogen-
associated molecular patterns (PAMPs), such as microbial
agents, viral proteins, RNA, CpG DNA, bacterial lip-
opolysaccharides (LPSs), and peptidoglycan. Signaling
through TLRs results in inflammatory reactions mediated
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immunomodulatory
compounds along with
their experimental activities
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by various cytokines such as TNF-α, IL-6, IL-8, and IL-1β.
The inhibitors of the TLR-mediated signaling of inflamma-
tory reactions are the decoy receptors, signaling inhibitors,
and immunomodulatory cytokines IL-4, IL-10, and IL-13.
[34]. Cluster of differentiation (CD) molecules also play a
very important role in the various immunological cascades
of reactions, and act as co-stimulatory signaling molecules
for the activation of several lymphocytes. Their activities
are responsible for producing numerous immune responses,
such as the production of T helper cells, cytotoxic T cells,
macrophage activation, and antibody production [35, 36].
The results obtained from molecular docking are compara-
ble to corresponding reported experimental data, which
suggests that the decreased proinflammatory mediator
expression is due to gallic acid derivatives. This in turn
indicates that the oral administration of gallic acid
derivatives will inhibit proinflammatory mediators and thus
enhance the production of immunomodulatory mediators.
Gallic acid derivatives showed high binding affinities (in
terms of the docking energy in kcal mol−1) with the
immunomodulatory receptors INFα-2, IL-4, and IL-6
(Table 2). Moreover, high binding affinities (lower docking

energies) with the INFα-2 receptor along with hydrogen
(H) bond formation were noted for the active gallic acid
derivatives G-4 (Fig. 3), G-7 (Fig. 4), and G-10 (Fig. 5).
Similarly, the active gallic acid derivatives G-7 and G-10
showed high binding affinities for the IL-4 (Fig. 6) and IL-6
(Fig. 7) receptors, respectively, along with H-bonding.

Comparison of the binding pocket residues for interferon
α-2 (INFα-2)

The activities of the gallic acid derivatives were analyzed
by performing molecular docking experiments with the
immunomodulatory receptors (INFα-2 and interleukins).
IL-4 and IL-6 are known proinflammatory cytokines that
play an important role in the immunomodulatory pathway.
The binding affinities obtained in the docking study
allowed the activities of the gallic acid derivatives to be
compared to that of the standard immunomodulatory
compound levamisole. All of the derivatives showed high
binding affinities (low docking energies) for INFα-2. When
we compared how the binding pocket residues of INFα-2
interacted with the gallic acid derivatives, we found that

Gallic acid Basic naphthophenone pharmacophore
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Fig. 2 Gallic acid based
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derivatives that were predicted
to be active immunomodulatory
compounds using the derived
QSAR model
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only compounds G-4 (Fig. 3), G-5, G-7 (Fig. 4), and G-10
(Fig. 5) form H-bonds, leading to more stability and
potency in these cases (Table 2). The docking results
for the active derivatives showed that compound G-4
docked onto INFα-2 with a low interaction energy
(−59.87 kcal mol−1) and formed an H-bond of length
2.045Å to the basic amino acid residue Lys-15. In this
complex, the binding pocket residues within a radius of 3
Å were Pro-109, Ile-194 (hydrophobic), Glu-108 (acidic),
Ser-17 (nucleophilic), and Lys-15 (basic) (Fig. 3). On the

other hand, the docking results for levamisole with INFα-2
showed a docking energy of −41.53 kcal mol−1 and the
formation of an H-bond of length 1.938Å to the basic
residue Arg-144. Other residues within a radius of 3Å were
Arg-22, Arg-144, and Arg-149, which are basic in nature.
Similarly, compound G-5 (predicted to be inactive) had a
docking energy of −62.80 kcal mol−1 and formed an H-bond
of length 1.994Å to the acidic residue Glu-108. In this
complex, the binding pocket residues within 3Å were Pro-
109, Pro-197 (hydrophobic), Glu-108 (acidic), Ser-26, Ser-
17 (nucleophilic), and Lys-15 (basic). Likewise, compound
G-7 docked with an interaction energy of −60.59 kcal mol−1

and formed an H-bond of length 2.167Å to the basic residue
Lys-15. The binding pocket residues within 3Å were Lys-15
(basic) and Glu-108 (acidic) (Fig. 4). Compound G-10
docked with a docking energy of −70.26 kcal mol−1 and
formed an H-bond of length 2.029Å to the acidic residue

Table 2 Docking scores (kcal mol−1) of gallic acid derivatives with
respect to the immunomodulatory targets INFα-2, IL-4, and IL-6

Compound Docking energy (kcal/mol) with Immunomodulatory
receptors

INFα-2 IL-4 IL-6

Levamisole −41.53 −47.78 −66.76
G-1 −58.66 −72.80 −92.96
G-2 −62.09 −90.25 −90.71
G-3 −66.50 −70.01 −87.73
G-4# −59.87 −69.39 −94.76
G-5 −62.80 −86.25 −105.20
G-6 −57.32 −75.40 −99.09
G-7# −60.59 −87.55 −88.97
G-8 −57.67 −83.26 −97.41
G-9# −62.17 −81.32 −88.04
G-10# −70.26 −89.11 −94.44
G-11 −75.10 −93.24 −78.05
G-12# −60.93 −80.79 −95.73
G-13# −80.38 −108.22 −89.71

Numeric values in boldface indicate H-bond formation, and #
indicates a predicted active gallic acid derivative

Fig. 3 Compound G-4 was docked onto immunomodulatory receptor
INFα-2 with a docking energy of −59.87 kcal mol−1, and an H-bond
of length 2.045Å to the binding pocket residue Lys-15 was observed

Fig. 4 Compound G-7 was docked onto immunomodulatory receptor
INFα-2 with a docking energy of −60.59 kcal mol−1, and an H-bond
of length 2.167Å to the binding pocket residue Lys-15 was observed

Fig. 5 Compound G-10 was docked onto immunomodulatory
receptor INFα-2 with a docking energy of −70.26 kcal mol−1, and
an H-bond of length 2.029Å to the binding pocket residue Glu-108
was observed
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Glu-108. The binding pocket residues within 3Å were Arg-
19 (basic), Glu-108 (acidic), Pro-109 (hydrophobic), Lys-15
(basic), Phe-65 (aromatic), and Ser-26 (nucleophilic)
(Fig. 5).

Comparison of the binding pocket residues
for interleukin-4 (IL-4)

The results of molecular docking showed high binding
affinities of the gallic acid derivatives for the immunomod-
ulatory receptor IL-4, comparable to that of levamisole
(Table 2). When we compared the binding pocket residues
that interacted with the active conformations of the
derivatives within the IL-4 complex, we concluded that
only compounds G-3, G-5, G-6, and G-7 form H-bonds, so
these were considered the most stable and potent com-
pounds. The docking results showed that compound G-3
docked with a docking energy of −70.01 kcal mol−1 and

formed an H-bond of length 1.739Å to the binding pocket
basic residue Arg-53. Other binding pocket residues within
a radius of 3Å were Arg-53, Arg-89 (basic), Asp-87
(acidic), Tyr-56 (aromatic), Lys-61, Lys-84 (basic), Ser-57
(nucleophilic), and Glu-60 (acidic). Similarly, compound
G-5 docked with a docking energy of −86.25 kcal mol−1

and formed an H-bond of length 2.085Å to the basic
residue His-62. The binding pocket residues of the complex
within 3Å were Ile-16 (hydrophobic), His-62 (basic), Gln-
52, Gln-189 (amide), Thr-18 (nucleophilic), Val-10 (hydro-
phobic), and Lys-97 (basic). Likewise, compound G-6
docked with a docking energy of −75.40 kcal mol−1 and
formed an H-bond of length 2.104Å to the basic residue
Lys-97. The binding pocket residues within 3Å were Ile-16
(hydrophobic), Glu-20 (acidic), His-62, Lys-97, Arg-91
(basic), Thr-18 (nucleophilic), and Val-60 (hydrophobic).
Lastly, active compound G-7 docked with a docking energy
of −87.55 kcal mol−1 and formed an H-bond of length 2.85
Å to the basic residue Arg-175. The binding pocket
residues (within a radius of 3Å) were Glu-20, Glu-189
(acidic), Arg-97, Arg-175, Arg-177 (basic), Trp-187, and
Trp-190 (both aromatic) (Fig. 6).

Comparison of the binding pocket residues
for interleukin-6 (IL-6)

The results of molecular docking showed high binding
affinities of the gallic acid derivatives for the immunomod-
ulatory receptor IL-6, comparable to that of levamisole
(Table 2). When we compared the binding pocket residues
that interacted with the active conformations of the gallic
acid derivatives within the IL-6 complex, only compounds
G-3, G-6, and G-10 were observed to form H-bonds, so
they were considered the most stable and potent. The
docking results showed that compound G-3 docked with a
docking energy of −87.73 kcal mol−1 and formed an H-
bond of length 2.075Å to the basic residue Lys-105. Other
binding pocket residues (within a radius of 3Å) were Gln-
196 (amide), Glu-114, Glu-286 (acidic), Lys-105, Lys-154
(basic), and Phe-103 (aromatic). Similarly, compound G-6
docked with a docking energy of −99.09 kcal mol−1 and
formed an H-bond of length 2.132Å to the aromatic residue
Phe-103. Other conserved binding pocket residues of the
complex within 3Å were Lys-105, Lys-154 (basic), Trp-
103, Trp-115, Phe-103 (aromatic), Gln-99, Gln-196
(amide), and Asp-198 (acidic). Likewise, the active
compound G-10 docked onto IL-6 with a docking energy
of −94.44 kcal mol−1 and formed an H-bond of length
2.135Å to the basic residue Lys-105. Other conserved
binding pocket residues of the complex within 3Å were
Gln-158 (amide), Ser-101, Ser-156 (nucleophilic), Lys-105,
Lys-154 (basic), Glu-114 (acidic), and Phe-103 (aromatic)
(Fig. 7).

Fig. 6 Compound G-7 was docked onto immunomodulatory receptor
IL-4 with a docking energy of −87.55 kcal mol−1, and an H-bond of
length 2.85Å to the binding pocket residue Arg-175 was observed

Fig. 7 Compound G-10 was docked onto immunomodulatory
receptor IL-6 with a docking energy of −94.44 kcal mol−1, and an
H-bond of length 2.115Å to the binding pocket residue Lys-105 was
observed
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Predicting activity with the QSAR model

The structure–activity relationship denoted by the QSAR
model yielded a very high activity–descriptors relationship
accuracy of 99% (r2=0.99) and a high activity prediction
accuracy of 96% (rCV2=0.96) (Fig. 9). Five chemical
descriptors were found to be applicable to the immuno-
modulatory activity. The QSAR equation indicated that
dipole moment, steric energy, amide group count, λmax

(UV-visible), and molar refractivity correlated well with
activity. The QSAR model equation is given below,
showing the relationship between experimental activity in
vivo [i.e., the dose that is lethal to 50% of the population
(LD50)] as the dependent variable and five independent
variables (descriptors):

predicted log LD50 mg=kgð Þ ¼ �0:156436� dipole moment debyeð Þ
�0:00118794� steric energy kcal mol�1

� �

þ0:910351� amide group count
þ0:0206362� lmax UV� visibleð Þ nmð Þ
�0:00834447�molar refractivity
�1:06753

:

Here, rCV2 (the cross-validation regression coefficient)
=0.96, which indicates that the newly derived QSAR model
has a prediction accuracy of 96%, and r2 (regression
coefficient)=0.99, which indicates that the correlation
between the activity (dependent variable) and the descrip-
tors (independent variables) for the training data set
compounds was 99% (Table 1, Fig. 8). Thus, we success-
fully developed a QSAR model for immunomodulatory
activity. Results showed that the predicted activities were
comparable with those obtained experimentally (Fig. 9),
and that compounds G-4, G-7, G-9, G-10, G-12, and G-13
have higher immunomodulatory activities than the standard
compound levamisole.

Assessing the pharmacokinetic parameters

We considered several physiochemical properties related
to PK when screening for active gallic acid derivatives.
The results revealed that, except for the compounds G-
10 and G-13, all of the gallic acid derivatives followed
Lipinski’s rule of five (Table 3). Compound G-10
violated Lipinski’s rule as logP > 5, so it was likely to
be poorly soluble in aqueous solution and hence unable to
gain access to membrane surfaces. Lipophilicity (ratio of a
molecule’s solubility in octanol to solubility in water) is
measured through logP. LogP has been linked to blood–
brain barrier penetration and utilized to predict permeabil-
ity. The process of excretion, which eliminates the
compound from the human body, depends on its molecular
weight and logP [21]. Molecules with intermediate lip-
ophilicities have a better chance of arriving at the receptor
site [22]. Similarly, compound G-13 violated Lipinski’s
rule as MW > 500 Da, making it likely to have low
solubility and to pass through cell membranes with
difficulty. The other active derivatives followed Lipin-
ski’s rule and had polarities that enabled better perme-
ation and absorption, as revealed by the number of H-
bond donors and H-bond acceptors. Similarly, the
ADME parameters were calculated for the active gallic
acid derivatives G-3, G-4, G-5, G-6, G-7, and G-10; the
values of these parameters also showed close correspon-
dence with those of levamisole and fell within the
standard range of values exhibited by 95% of all known
drugs. Calculations related to aqueous solubility, serum
protein binding, the blood–brain barrier (log BB and
apparent MDCK cell permeability), gut–blood barrier
(Caco-2 cell permeability), predicted central nervous
system activity, number of likely metabolic reactions,
log IC50 for hERG K+ channel blockage, transdermal

Fig. 8 Multiple linear regression analysis indicates a linear relationship between the experimental and predicted log LD50 (mg/kg) values for the
training set
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transport rate (Jm), skin permeability (Kp), and human oral
absorption in the gastrointestinal tract showed that these
values for the active gallic acid derivatives fell within the
standard ranges generally observed for drugs (Table 4).

Toxicity risk assessment

It is now possible to predict the activities and toxicity risks
of compounds using reliable bioinformatics tools. In the

Fig. 9 Multiple linear
regression analysis indicates a
linear relationship between the
experimental and predicted
log LD50 (mg/kg) values for
the test set

Table 3 Compliance of gallic acid derivatives with standard ranges of computational parameters of druglikeness and ADME properties.
Compounds G-10 and G-13 were found to violate Lipinski’s rule of five

Compound Pharmacokinetic property (ADME) dependent on chemical descriptors Rule of five
violation

ADM AE ADME AD

Oral bioavailability:
TPSA (Å2)

MW logP H-bond donor H-bond acceptor

Amine
group count

sec-Amine
group count

Hydroxyl
group count

Nitrogen
atom count

Oxygen
atom count

Levamisol 40.9 204.29 3.259 0 0 0 2 0 0

G-1 64.99 338.35 3.228 0 0 1 0 5 0

G-2 53.99 450.48 3.832 0 0 0 0 7 0

G-3 91.29 424.44 3.243 0 0 2 0 7 0

G-4# 80.29 424.44 3.175 0 0 0 0 7 0

G-5 91.29 396.39 2.801 0 0 0 0 7 0

G-6 80.29 438.47 3.357 0 0 0 0 7 0

G-7# 97.36 452.46 2.712 0 0 0 0 8 0

G-8 80.29 460.43 4.377 0 0 0 0 7 0

G-9# 97.08 421.44 2.593 0 0 0 1 6 0

G-10# 83.09 497.54 5.23 0 1 0 1 6 1

G-12# 83.09 477.55 4.047 0 1 0 1 6 0

G-13# 110.78 587.62 3.763 0 1 0 1 9 1

Aabsorption, Ddistribution, Mmetabolism, E excretion, TPSA topological polar surface area, MWmolecular weight, logPoctanol/water partition
coefficient

# indicates a QSAR-based predicted active gallic acid derivative
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present study, we calculated toxicity risk parameters such as
mutagenicity, tumorogenicity, irritation, and reproduction of
the gallic acid derivatives (G3–G13) (Table 5). The toxicity
risk predictor locates fragments within a molecule that
indicate a potential toxicity risk. Toxicity screening results
showed that none of the compounds presented a risk of
tumorogenicity or reproductive toxicity, although there was
a partial mutagenicity risk. On the other hand, compounds
G-3, G-9, G-10, G-12, and G-13 presented a high risk of
irritation and were thus rejected, while compounds G-4, G-
5, and G-7 presented no risk of irritation. Compound G-6
yielded a medium risk of irritation. The hydrophilicity of

each compound was measured through its logP value. Low
hydrophilicity and therefore a high logP value may lead to
poor absorption or permeation. For compounds to have a
reasonable probability of being well absorbed, it has been
found that their logP values must not be >5. This study
suggests that, except for compounds G-10 and G-12, all of
the compounds conformed to this limit. Typically, low
solubility is associated with bad absorption, so the general
aim is to avoid poorly soluble compounds. The aqueous
solubility (logS) of a compound significantly affects its
absorption and distribution characteristics. The calculated
logS values of the studied compounds were within the

Table 4 Compliance of active gallic acid derivatives with the standard ranges of computational pharmacokinetic parameters (ADME)

Principal descriptors Levamisole G-3 G-4# G-5 G-6 G-7# G-10# Stand. range*

logS (aqueous solubility) −3.476 −5.549 −5.378 −4.425 −5.598 −5.297 −7.594 −6.5 / 0.5

logKhsa (serum protein binding) 0.112 0.266 0.319 −0.004 0.394 −0.020 0.964 −1.5 / 1.5

log BB for brain/blood 0.462 −1.546 −0.924 −1.240 −0.923 −1.526 −1.023 −3.0 / 1.2

No. of metabolic reactions 2 5 5 5 5 5 6 1.0 / 8.0

Predicted CNS activity +2 −2 −1 −2 −1 −2 −2 −2 (inactive), +2 (active)

log IC50 for hERG K+channel blockage −4.198 −4.306 −6.116 −3.717 −6.193 −6.721 −7.702 Concern below −5
Apparent Caco-2 permeability (nm/s) 5589 99 1448 131 1682 597 1580 <25 poor, >500 great

Apparent MDCK permeability (nm/s) 5839 51 738 70 867 M 283 M 811 M <25 poor, >500 great

logKp for skin permeability −3.392 −2.469 −1.425 −2.377 −1.210 −1.971 −0.482 −8.0 to −1.0, Kp in cm/h

Jm (max. transdermal transport rate) 0.028 0.004 0.067 0.063 0.068 0.024 0.004 μg/cm2 h

Jorgensen rule of three violations 0 0 0 0 0 0 1 Maximum is 3

% human oral absorption in GI (±20%) 100 89 100 87 100 100 89 <25% is poor

Qual. model for human oral absorption High High High High High High Low >80% is high

* For 95% of known drugs, based on –Qikprop v.3.2 (Schrödinger, USA, 2009) software results

# indicates a QSAR-based predicted active gallic acid derivative

Table 5 Compliance of the active gallic acid derivatives with the standard intervals for computational toxicity risk parameters

Compound Toxicity risk parameters Druglikeness parameters (Osiris)

MUT TUMO IRRI REP MW CLP S DL DS

Levamisole No risk No risk No risk No risk 206 1.38 −1.52 3.73 0.95

G-3 Medium risk No risk High risk No risk 422 3.67 −5.48 4.81 0.25

G-4# Medium risk No risk No risk No risk 424 3.99 −5.6 0.24 0.31

G-5 Medium risk No risk No risk No risk 396 3.1 −5.17 4.21 0.48

G-6 Medium risk No risk Medium risk No risk 438 4.45 −5.87 −6.57 0.14

G-7# Medium risk No risk No risk No risk 452 3.35 −5.52 −10.7 0.21

G-9# Medium risk No risk High risk No risk 421 3.13 −5.56 3.35 0.26

G-10# Medium risk No risk High risk No risk 497 5.23 −6.98 2.55 0.14

G-12# Medium risk No risk High risk No risk 477 5.01 −6.31 2.42 0.16

G-13# Medium risk No risk High risk No risk 587 4.92 −7.03 4.23 0.13

MUTmutagenicity, TUMO tumorogenicity, IRRI irritation, REPreproduction, MW molecular weight, CLPClogP, Ssolubility, DLdruglikeness, DS
drug score

# indicates a QSAR-based predicted active gallic acid derivative
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acceptable interval. To judge the compound’s overall
potential to act as a drug, we calculated its overall drug
score, which combines its druglikeness, ClogP, logS, MW,
and toxicity risk parameter values. Generally speaking, the
calculated parameters for the active compounds were within
the acceptable interval. Results revealed that the overall
drug scores of compounds G-5, G-4, G-7, and G-6 were
good to moderate compared to the standard immunomod-
ulatory compound levamisole.

Conclusions

Molecular docking and QSAR studies were performed on
gallic acid derivatives in order to predict the potential
immunomodulatory compounds. During the molecular
docking studies, all of the derivatives showed high binding
affinities with INFα-2, IL-4, and IL-6. The binding site
residues of INFα-2 exhibited H-bond formation with
compounds G-4, G-5, G-7, and G-10. Similarly, com-
pounds G-3, G-6, and G-10 formed H-bonds with IL-6
binding site residues. On the other hand, the binding site
residues of IL-4 exhibited H-bond formation with com-
pounds G-3, G-5, G-6, and G-7, which were thus
considered to be the most stable and potent of the
compounds. Moreover, virtual screening performed using
the derived QSAR model suggested that compounds G-4,
G-7, G-9, G-10, G-12, and G-13 possess immunomodula-
tory activity. However, compounds G-10 and G-13 violate
Lipinski’s rule, indicating low oral bioavailability. Based on
bioavailability, in silico ADME, and toxicity risk assess-
ments for mutagenicity, tumorogenicity, irritation, and
reproduction, we concluded that compound G-7 possesses
greater immunomodulatory activity then G-4, G-9, G-10,
G-12, and G-13.
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